
Best Practices for Expanding
Quality into the Build Cycle

What’s Inside
01| Introduction

03| Improving Quality Through Functional
 Testing in Continuous Integration

05| Shifting Quality Left Is Hard Work

06| Continuous Testing Costs vs. Delayed
 Feedback Costs

08| Improving Quality One Step at a Time

12| Balancing WIP: Stop Starting, Start Finishing

13| Taking Advantage of Bottlenecks

14| Beyond the Build and into a Culture of Quality

15| Using Test First Approach to Build Automation
 into Development

17| A New Kind of Testing Professional

18| Conclusion

By not testing often
and as early as possible,
you risk failing to
deliver products at the
frequency and quality
your business demands.

2

Introduct ion:
Agile and Fast Feedback
Building quality into development is now an

imperative for all software-intensive companies.

The Agile approach for software delivery is

finding its way into more of these organizations

as the pace of mobile demands faster and more

efficient releases. Yet “Agile” is not a free lunch.

It’s fairly common for organizations to focus

on the project management aspect of Agile and

implement frameworks such as Scrum, Scaled

Agile, or Kanban. Some teams just switch their

Application Lifecycle Management (ALM) tool to

an “Agile” tool or add an Agile template to their

current tool. But these same organizations end

up frustrated with the mediocre results they get

from their Agile investment.

Other companies go beyond just the process and

implement some key technical principles. One of

the most useful principles in Agile is “Working

Software over Comprehensive Documentation.”

The intent behind this principle is that as

uncertainty grows we need to tighten our

feedback loops to make sure our assumptions are

correct and we’re headed in the right direction.

Whether those are business assumptions or

technical ones, the principal of “working

software” is a much better way to close the

feedback loop to see if your software is achieving

the right outcomes, rather than just presenting

what you plan to do. What’s missing is the

importance of testing “working TESTED software,”

which goes beyond cursory demonstration to real

test coverage of the new functionality and the

system as a whole.

To go faster, we must make sure that software is

indeed “working TESTED software.” By not testing

often and as early as possible, you risk failing to

deliver products at the frequency and quality your

business demands.

How early should you be testing? The short

answer is you should shift testing left into the

build phase of the SDLC. But such a transition

requires changes in culture, tools and strategy.

This report will explore these challenges and offer

advice on what it takes to expand quality testing

into the build cycle.

3

Shifting Quality Left Through Functional
Testing in Continuous Integration
You can’t discuss Agile development without mentioning CI

(continuous integration), a well-established practice that calls for

building, integrating, and testing the system you’re developing

upon delivery of even the smallest change.

Many organizations invested in CI before even thinking about

adopting Agile development approaches. This helps explain

why CI is one of the most popular technical practices associated

with Agile. Fifty percent of all Agile teams use CI, according to

VersionOne’s 2015 State of Agile Report.

Another practice coming from the Agile world is “Definition

of Done” combined with “Whole Team.” Effective Agile teams

implementing a framework like Scrum share these common traits:

1 They consider it the responsibility of the “Whole Team” to get an

 item to “Done.”

2 They don’t consider a work item “Done” until it has been tested

 and cleaned up.

3 When testers are struggling to finish testing, developers give

them a hand by taking on some test automation and test

preparation responsibilities, running regression tests, and even

testing new functionality that others on the team delivered.

Teams are discovering that these practices help them become more

efficient. Defects are found earlier among a much smaller set of

changes and therefore are easier to fix. Convergence on a working

and reliable system is dramatically accelerated. If you look at the

development flow as going from left to right, these practices will

shift testing to the left. The increasingly popular term “Shift Left”

was invented to describe this process of building in quality earlier.

50% of all Agile
teams use CI, according
to VersionOne’s 2015
State of Agile Report.

https://versionone.com/pdf/VersionOne-10th-Annual-State-of-Agile-Report.pdf

4

Faster Feedback: The Human Perspective
In addition to the cost savings that come with fixing defects earlier in the lifecycle, there’s

a human nature reason for shifting left.

Agile practitioners notice that quality goes up as time to feedback goes down. As described

in Sterling-Mortensen’s HP Laserjet Firmware Development Case Study: “People are self

motivated to improve quality if they can see quickly that what they’re doing has problems.

But if there is a long delay their motivation drops significantly. Going to small batch iterative

development reduces defects. Every time the process went faster, the quality got even better.”

Key takeaways:

• Continuous integration is a key enabler of Agile;

without CI, productivity improvements will be limited.

• A “Definition of Done” that doesn’t include testing

and cleanup delays both developers and testers in

the end.

• The more integrated testing is into the development

phase, the fewer escaped defects and delays.

SHIFT LEFT

Features
Backlog

Feature/
Sprint

in Progress
Stories
Backlog Ongoing Done Ongoing Done Ongoing

Long wait
for the

end game Deployment DoneDone Ongoing Done

SPECIFY DEVELOP END RELEASE TESTING

IMPLEMENT FEATURE BY STORIES

THE JOURNEY FROM IDEA TO 'DONE' SOFTWARE

STORY-LEVEL
TEST & FIX

K

L

G

H
H.5 H.6 H.4 H.2 H.0

H.7 H.7 H.1

J A

B

C

D

E

FT1 T2 T2

D3 D2 D1

Agile Team 1

Agile Team 2

http://www.sep.com/lk2009/sterling-mortensen-case-study-hewlett-packard-laserjet-development/

5

With all that said, one would expect widespread

adoption of practices that instill quality into the

build cycle. But while unicorns like Google, Facebook,

Amazon and Netflix may be shifting left with relative

ease, IT organizations in “work horse” industries such

as banking, insurance, and media are struggling to

shift left both technically and organizationally.

On the technical side, while continuously building

a system is now a mainstream practice, integrating

significant test coverage as part of the continuous

build is much more challenging. As crucial as test

coverage is to quality, it’s surprisingly difficult to

integrate into CI without help. Statistics from the

State of Agile report show that while CI adoption is

at 50% among the survey respondents, automated

acceptance testing is only at 28%.

For many IT organizations, this isn’t a surprise.

Implementing a comprehensive test automation suite

that covers acceptance tests and integration tests is

hard. This is especially true when there are legacy test

cases and old systems to deal with, or when a mobile

application with a lot of UI elements is involved.

In many cases, continuous integration is just

“continuous build” managed by developers and

quality is handled by testers later. Sometimes

we see a hybrid structure where some quality is

built into the build cycle through the testing of

new functionality by a tester on the Agile team and

regression testing happens toward the end of the

release by a dedicated testing team.

Test automation in and of itself is another challenge

for these organizations. We still hear statements

like, “There’s no ROI for test automation.” In other

cases, it’s still handled by a special automation team

removed from the build cycle. As the time between

coding and test automation grows, it becomes harder

to drive an automation-friendly design because it’s

not on developers’ minds when they’re building the

software. It then becomes too late to change course

when automation finally comes into the picture.

Shifting Quality Left Is Hard Work

In the State of Agile
report, CI adoption is at

50% among survey

respondents, but automated
acceptance testing is only

at 28%.

Key takeaways:

• Even as “continuous build” grows in popularity,

achieving real continuous integration that

includes robust test automation eludes many

organizations.

• The “separate silo” approach to test automation

is mediocre at best because it’s too far removed

from the development cycle.

6

Continuous Testing
Costs vs. Delayed
Feedback Costs
The main economic benefit of expanding quality into the build

cycle is dramatic reduction in release costs. If we can tighten the

feedback loop, then fixing what we find earlier will be easier and

cheaper. The ROI of automated testing is the fast feedback about

defects that ultimately saves developers hours of time. So why

do so many of us still lag behind with a longer feedback loop that

depends on testing for quality late in the cycle?

The main culprit is transaction costs. What are transaction

costs? Whenever we go through a build/integrate/test cycle,

there’s certain overhead (backlog prioritization, story lock,

retrospectives) regardless of how many new features have

entered the build. In many cases, we look at these fixed costs and

find it hard to justify wasting time and effort when we could just

wait a bit and run the process for a bigger batch. Organizations

end up asking, “Why run a test cycle every two weeks if we could

run it every four weeks and save some testing costs?”

The transaction cost curve diagram from Donald G. Reinertsen’s

book “Principles of Product Development Flow” (on the right)

visualizes this desire to save costs by going to bigger batch sizes.

Total Cost

Ideal Batch
Without Continuous
Quality Investment

Traditional Cost

ECONOMIC BATCH SIZE

Transaction Cost

Batch Size

Holding Cost

Reduce Batch Size Further
With Great Automation and
Leaner Processes

From the book “The Principles of Product
Development Flow” by Donald G. Reinertsen

https://www.amazon.com/Principles-Product-Development-Flow-Generation/dp/1935401009

7

What the diagram also shows is those costs we

tend to ignore: “Holding costs” or “costs of

delay.” These are the costs of finding and fixing

quality problems further from the point they

occurred.

By looking at the total costs—combining the

transaction costs with the holding costs—we get

what is called a tradeoff curve. We can use this to

find the ideal batch size for a certain process in a

certain context. When applying this model in the

field, we frequently see that neither the Agilists

insisting on continuous quality in the build

cycle nor the people who wait for “just one more

feature” before running their tests are optimizing

their economic result.

With all this data at hand, we could calculate

the batch size that achieves the perfect balance

between transaction and holding costs, but we

don’t need to get this perfect. Because this is a

U-shaped tradeoff curve, there’s a big area in the

middle where the economic outcome is similar for

a range of batch sizes. Reinertsen advises that

if you’re currently running an economy of scale,

simply reduce your batch size by half and start

from there. It’s important to note that this is the

right approach even without making any process

improvements that reduce the transaction costs.

In many cases, each test type (performance tests,

regression tests, security testing) bears different

costs. This means we need to apply the tradeoff

curve model and find the right batch size for

each test type. The ideal batch size for regression

testing may be daily, while security testing is

more effective on a weekly basis.

Once we decide this, we need to reduce batch

sizes. How do we do that? We’ll look at several

steps we need to take in the next sections.

“The ROI of automated testing
is the fast feedback about

defects that ultimately saves
developers hours of time.”

Key takeaways:

• Ideal testing frequency is a function of

testing costs as well as fixed costs.

• There isn’t one best practice for testing

frequency. You need to identify the ideal

frequency per testing type.

• Each test type might have a different ideal

batch size. Apply the tradeoff curve model

for each test type separately. Build

Learn Test

Fix

8

Improving Quality One Step at a Time
Once we decide to reduce the batch size, the first step is to establish a way

to visualize your workflow. You can use a Kanban board (shown above)

to help you see and improve the flow. You can use a physical board or an

electronic one if you have a distributed team. Some well-known Kanban

tools include LeanKit and Trello. Most Agile ALM tools like JIRA, CA Agile

Central, and VersionOne now provide Kanban boards as well.

You can also look at your features and apply various Agile techniques to slice

them into smaller features (also known as Minimum Viable Products) that

can flow faster through the development pipeline to the point where testing

takes place.

SHIFT LEFT

Features
Backlog

Feature/
Sprint in
Progress

Stories
Backlog Ongoing Done Ongoing Done Ongoing

Ready For
Feature

Test Deployment DoneDone Ongoing Done

SPECIFY END RELEASE TESTING
STORY-LEVEL

TEST & FIXDEVELOP

IMPLEMENT FEATURE BY STORIES

STEP 1: INTRODUCE AGILE TESTING

Ongoing Done

TEST FEATURE LEVEL

K

L

M

G

H
H.5 H.6 H.4 H.2 H.0

H.7 H.7 H.1

J

D

E

F

A

B

C

T1 T2 T2

D3 D2 D1

Agile Team 1

Agile Team 2

+

Add Feature/Epic/
Iteration level testing

9

However, smaller batch sizes are not enough. No matter what the batch size, quality can only be

built in if it depends on a Definition of Done that includes full test coverage and resolution of

defects. So mark a feature or story “Done” only if it has passed all of its test coverage and if all

the defects that need to be fixed pass release-grade criteria. (For project management purposes,

track which features are done and which are still in progress.) The important point to note is that

even if stories have been completed by an Agile team, the feature itself will be considered just a

work in process.

SHIFT LEFT

Features
Backlog

Feature/
Sprint in
Progress

Stories
Backlog Ongoing Done Ongoing Done Ongoing

Ready For
Feature

Test Deployment DoneDone Ongoing Done

SPECIFY END RELEASE TESTING
STORY-LEVEL

TEST & FIXDEVELOP

IMPLEMENT FEATURE BY STORIES

STEP 2: PRIORITIZE TYPES OF TESTING AND FAST FEEDBACK

Ongoing Done

TEST FEATURE LEVEL

K

L

M

G

H
H.5 H.6 H.4 H.2 H.0

H.7 H.7 H.1

J

D

E

F

A

B

C

T1 T2 T2

D3 D2 D1

Agile Team 1

Agile Team 2

Quality can only be built in if it
depends on a Definition of Done
that includes full test coverage and
resolution of defects.

+
Left-shift through automation, enabling teams
using environments/tools/knowhow and more

SecurityRegression
Functional

Progression

PerformanceUAT
Exploratory

AU
TO PLATFORM

10

Here’s where most people say: “That’s way too tough! We cannot get to 'Done

Done', including all the coverage, every two weeks!”

They’d be right: it’s not very pragmatic to reach “Done Done” in a two-week

sprint. However, this is exactly where we should recall the batch size tradeoff

curve we discussed earlier.

Theoretically, Done Done would mean full coverage — the one that you run

before release and that covers the following testing types: progression,

regression, exploratory, usability, performance, other non-functional testing,

full user acceptance testing, and full compatibility matrix.

SHIFT LEFT

Features
Backlog

Feature/
Sprint in
Progress

Stories
Backlog Ongoing Done Ongoing Done Ongoing

Ready For
Feature

Test Deployment DoneDone Ongoing Done

SPECIFY END RELEASE TESTING
STORY-LEVEL

TEST & FIXDEVELOP

IMPLEMENT FEATURE BY STORIES

STEP 3: DETERMINE TIMELY & OPTIMAL TEST COVERAGE

Ongoing Done

TEST FEATURE LEVEL

K

L

M

G

H
H.5 H.6 H.4 H.2 H.0

H.7 H.7 H.1

J

D

E

F

A

B

C

T1 T2 T2

D3 D2 D1

Agile Team 1

Agile Team 2

The 2-level Test Strategy Pyramid - Story + Release-level

“Sprint is too short for everything
we need to achieve Done”

“Let’s leave the serious testing for the
release testing phase”

SecurityRegression
Functional

Progression

PerformanceUAT
Exploratory

AU
TO PLATFORM Real Network

11

Now try to make a separate tradeoff curve for each testing type. As

mentioned earlier, the curve for performance testing can be different

than for regression testing. Balance the type of testing with what

aspects are a priority for the work at hand.

One of the key levers to improve your results is to identify cases where it

makes the most sense to shift to a smaller quality batch size and not try

to “boil the ocean” by forcing a tight feedback loop for everything. This is

a modern version of risk-based testing.

To apply the risk-based method to holding costs, you need to:

1 Consider how much more expensive it becomes to fix defects you find

in each of the test types the further you are from the time the defect

was introduced.

2 For each of the testing types, consider what the transaction costs are

each time you run it. Look for cases where the risk/cost of delayed

feedback is high and the transaction costs are manageable and try to

shift those testing types left into development cycle.

3 Ideally, you want to shift those tests all the way into the CI system,

but if that’s not practical then you can decide to run them every time

a story is done (a matter of days) or every time a feature is done (a

matter of weeks).

4 Look for cases where the risk/cost of delayed feedback is high but the

transaction costs simply don’t make it economically viable to shift the

testing left. For these cases, work on ways to reduce the transaction

costs by introducing more automation, training more people to run

tests, or by creating a minimally viable test that uncovers the most

costly types of defects.

5 This test coverage activity isn’t a one-time event.

Repeat it every couple of months.

Key takeaways:

• It’s important to establish a way to visualize your flow of work

(i.e. Kanban).

• It’s realistic to think you can’t do all the things in each sprint.

• Small batches still depend on a “Definition of Done” that includes

test coverage and resolution of defects.

• Pay attention to the different costs associated with quality, such

as the cost of testing more frequently (i.e. transaction costs) and

the costs of delayed feedback.

• Balance the type of testing that you shift left with what aspects

of quality are a priority.

“Pay attention to the costs of testing more
frequently (transaction costs) and the costs of

delayed feedback.”

12

After enabling faster feedback by building more quality into

the build cycle, we need to ensure a healthy flow of features/

stories through this pipeline.

You frequently hear: “We have nothing to test yet! The build

isn’t meaningful. Everything is coming in on the last couple of

days of the release.” The antidote to this is to adopt a “stop

starting, start finishing” mindset. Start to continuously

manage the flow of features and avoid having “too many

features in progress.” The Kanban boards discussed earlier

are the classic way to achieve this flow.

Another proactive antidote is to limit the amount of features

that are allowed to be “in process” at each stage in the

lifecycle — known as the WIP (work in process) Limit. If we

decided the Development WIP should be four, once there are

four features in development, we cannot start developing

a new feature until one is pulled from development into

testing. You should set your WIP Limit to what your team

says they can actually do, and then seek to optimize it.

At the team level, you can continue to use this Limited WIP

approach but this time at the level of more granular work

items that flow from development to testing every couple

of days. Agile teams typically use “user stories,” which are

small, testable, valuable slices of functionality.

Another popular alternative is working in “timeboxes.” In

Scrum, a team including developers and testers will look at a

backlog of work items (typically these are user stories) and

carve a list of items they will focus on for the next timebox

(timeboxes are usually two weeks). The criteria for deciding

how many items to focus on in a timebox is: “How many

items can we get to Done?” It’s not, how many items can be

developed, or how many items can be tested. It’s how many

items we can design-develop-test-fix. Once teams create this

list (often called the Sprint-Backlog or SBL), they should

stay laser-focused on that list throughout the timebox.

Balancing WIP: Stop
Starting, Start Finishing

Key takeaways:

• To ensure a healthy flow through the quality cycles,

avoid having too much WIP (work in process).

• Teams shouldn’t commit to more than they can

realistically finish in the sprint. Collaborate to finish

the high priority work you’ve already started.

• Scrum sprint planning is effective only when your

“Definition of Done” for each story includes all the

activity required for a quality result.

• Limiting WIP will result in some pains. It’s crucial to

deal with them to improve flow.

13

Regardless of the approach towards reducing the

amount of WIP, there will be both positive impact

(healthier workflow) as well as potentially painful

adjustments to working in a more collaborative

workflow. This is natural. However, you must

recognize the impediments to leaner, more

collaborative flow and work on removing them.

If you don’t do this, healthy workflow will

be unachievable.

One example of a hardship is developers having

to follow through to a complete “Definition of

Done” rather than just “Coded.” In many cases,

this results in a testing bottleneck that prevents

developers from starting new features. To

alleviate a testing bottleneck, create a backlog of

engineering investments that will improve testing

capacity, usually by reducing the amount of work

needed per feature.

The best example is, of course, test automation

that can be developed by developers. This solves

the slowdown problem. Involve your teams in

building the Engineering Investment backlogs to

increase their commitment to this approach.

Experience also shows that there’s a higher level

of commitment when working to alleviate rather

than locally dealing with a problem. This is exactly

where the transaction cost analysis you performed

earlier becomes useful. The work you do to help

reduce transaction costs and enable shifting left

to smaller batch sizes is exactly the kind of work

you want the team to take on when they see a

backlog in testing.

Taking Advantage of Bottlenecks

Key takeaways:

• Limiting WIP is not easy, but it is rewarding

if teams work to reduce the amount of

work needed per feature (usually through

test automation).

• WIP limits throttle development pace

and align it with the testing pace. This

often creates slack that can be redirected

to improve the testing pace by forcing

developers to write test automation code.

• To help developers deliver better quality

code, have them focus on getting features

to “Done” rather than “Code Complete.”

To alleviate a testing bottleneck,
create a backlog of engineering
investments that will improve
testing capacity, usually by
reducing the amount of work
needed per feature.

14

Bringing quality further into development is the

main goal. But why stop there? The test scenarios

we run provide useful information. Why not get this

information before we do the technical design?

This is what Acceptance Test Driven Development

(ATDD) is all about. It is an application of Test

First, an approach that encourages discussing and

defining test coverage before implementing code.

Other Test First approaches include Behavior-Driven

Development (BDD) and Specification by

Example (SbE).

A culture of quality includes acceptance tests as

part of the design and early specification stages.

Having the discipline to specify concrete acceptance

test scenarios in a collaborative discussion between

product/business teams and developers and testers

improves teamwork. Figuring out expectations up

front will help teams reduce the amount of defects

they have to deal with.

If continuous integration is building quality into

the development cycle, ATDD/BDD/SbE is building

quality into the design cycle. Both developers

and testers benefit from the collaborative effort

to define acceptance test scenarios from the get-

go. Testers will have influence on the choice of

acceptance tests and can focus on preparing to test

the right scenarios with the right data. Developers

can now code for the expected functionality rather

than for the technical spec only. Developers will

know what acceptance tests are expected to pass

and testers can trust developers to deliver a higher

quality build to them.

Some teams use ATDD/BDD tools to specify the

acceptance test scenarios. The emphasis though

should be less on tools and more on communication

about what the acceptance criteria should be. Tools

can support this process but not replace it. Typically

at this point, the acceptance tests are specified at

the “highlights” level. We use these acceptance test

highlights to make sure our UI matches the business

requirements.

Beyond the Build and into a
Culture of Quality

Both developers and
testers benefit from the

collaborative effort to define
acceptance test scenarios

from the get-go.

Discover more
resources about Test-

first approaches like ATDD,
BDD and Specification
by Example by visiting

agilesparks.com

Key takeaways:

• A culture of quality includes acceptance tests

as part of the design stages with the aim of

informing design rather than just validating it.

• Both developers and testers benefit from

practices that encourage up front collaboration.

http://www.agilesparks.com/test-first-reading-list
http://www.agilesparks.com/test-first-reading-list
http://www.agilesparks.com

15

Using Test First Approach to Build
Automation into Development
As described earlier, one of our key recommendations

is to take a “Whole Team Automates as part of Done”

approach to include more test coverage as part of

CI testing. Yet this is challenging because it shifts

ownership of automation from a testing silo to the

“Whole Team.” This will require a leap of faith to

reduce the reliance on UI testing. This also requires

a major shift in automation tools and skills that will

challenge the comfort zone of developers, testers

and automation experts.

But the “Whole Team Automates” approach has

proven to be a strong enabler for building quality

into the development cycle.

A key refrain we hear from testing organizations

is: “Testing is a profession. We’re the experts on

identifying the right coverage. If the developers are

now taking on some of the testing and automation

work, are we expected to trust that they’ll think of the

right scenarios? Won’t quality be at risk?”

One way the Test First approach helps here is that

it provides a lightweight way for the testers to

guide the developers’ automation efforts. The risk

is reduced because developers can focus not on

prioritizing scenarios, but rather on the technical

implementation of how to best test for those

scenarios and how to come up with an ideal test

automation system architecture that will enable

fast, reliable, maintainable and extendable test

automation.

At this point, many organizations choose to look at

ATDD/BDD tools like jBehave, Cucumber, Robot, or

FitNesse that are able to parse tests written in the

business domain language of the acceptance test

scenarios and execute calls to the system under test

using test drivers like Selenium, SoapUI, Perfecto, or

any other tool that provides an API.

“The ‘whole team
automates’ approach
has proven to be an

enabler for building quality
into the development

cycle.”

16

One big advantage of this ATDD/BDD automation approach

is that it enables tests in a language everyone on the team

(including the non-coders) can read, write and discuss.

It also allows non-coding testers to participate in the

automation effort. These testers specify scenarios. If they

rely on existing domain language, they can directly execute

the tests. If they need a new capability in the domain,

they can request it and then ask a developer or automation

engineer on the team to support this capability.

Teams using Test First approaches get much higher

automated test coverage (some above 90%) than the typical

test-last teams, both due to discipline and to developers’

awareness of the acceptance tests.

Teams using Test First approaches
get much higher automated test
coverage (some above 90%) than
the typical test-last teams.

Key takeaways:

• Team members need to get out of their individual

comfort zones if they want to automate every part

of the delivery chain.

• Testers can elevate their impact by using Test

First approaches to help guide developers’

automation efforts.

• Using the language of your domain through ATDD/

BDD tools makes it easier for teams to collaborate

on quality.

• Real world teams using Test First approaches get

much higher automated test coverage (some above

90%) than the typical test-last teams.

17

A New Kind of Testing Professional
Test automation is clearly a major enabler for building

quality into the build cycle. But what does that mean for

the testing engineer role? One common answer is that all

testers need to become proficient in test automation.

So now the question is what does test automation look

like? If you look at the classic commercial test automation

tool, you will see a record and play combined with a

scripting language — designed for non-developers. But

test automation suites that rely on such approaches are

brittle and costly to maintain.

The situation worsens when you try to apply the

“Whole team ownership of automation” principle. The

typical developer has a distaste for commercial test

automation tools. So more organizations are using a new

breed of test automation tools that have a developer-

friendly interface with integration into their IDE, APIs/

SDKs in their favorite programming languages, and a

better-architected structure.

The downside is that this makes life more challenging for

the tester. Even scripting-level test automation skills

are a non-trivial thing to ask of the typical test engineer.

There aren’t many super-testers who can shine a light on

the right coverage and write effective test automation

code. It’s a lot to ask them to also develop in a full-fledged

programming language such as Java, C# or Ruby.

One of the advantages of the ATDD/BDD tools described

earlier is they help conquer the divide between the actual

automation code that talks to the system under test and

the specification of the test scenarios. We can now ask the

testing expert to focus on the high-level acceptance test

specification. The test automation itself will be built by the

developers or test automation engineers.

What is becoming clear is that the classic low-cost manual

tester is struggling to fit into this new “build quality in”

world. In most cases, manual testers are left to focus on

those high-cost tests that are, at least for the time being,

left out of the development cycle.
More organizations are

using a new breed of
test automation tools
that have a developer-

friendly interface.

Key takeaways:

• Finding testing experts who are also automation

aficionados is a struggle for many organizations.

• Don’t expect testers to be adept at writing code.

• ATDD/BDD can act as a bridge between testing

technologies and testing skills.

18

Conclusion
If you’re not working on shifting left, you risk escalating release costs and failing
to keep up with business demands. However, this is easier said than done — we’re
fighting against strong economic and psychological forces.

The key to success is to take a set of evolutionary steps and shift more and more
quality aspects into the build cycle and even upstream into the design cycle. This is
a transformation. It requires thoughtful change management and leadership. It is
not something the development and testing leads can undertake on their own. It
requires a group of leaders to get into a room, chart the way and create a coalition
to support the change.

About the author
Yuval Yeret is a senior enterprise agility coach and head of the US office for AgileSparks, an

international Lean Agile consulting company with offices in Boston, Israel, and India. Yuval is

leading several strategic long-term scaled Lean/Agile initiatives in large enterprises such as

Siemens, HP, Amdocs, Informatica, Intel, and CyberArk, among others. Yuval is a big believer in

pragmatic, best-of-breed solution design, taking the best from each approach. He is a recipient

of the Brickell Key Award for Lean Kanban community excellence and is the author of “Holy

Land Kanban” based on his thinking and writing at yuvalyeret.com.

http://www.agilesparks.com
http://yuvalyeret.com/

© 2016 Perfecto Mobile Ltd.
www.perfectomobile.com

781.205.4111

About Perfecto
Perfecto enables exceptional digital experiences. We help you transform your business and strengthen every digital interaction with a quality-first
approach to creating web and native apps, through a cloud-based test environment called the Continuous Quality Lab™. The CQ Lab is comprised
of real devices and real end-user conditions, giving you the truest test environment available.

More than 1,500 customers, including 50% of the Fortune 500 across the banking, insurance, retail, telecommunications and media industries
rely on Perfecto to deliver optimal mobile app functionality and end user experiences, ensuring their brand’s reputation, establishing loyal
customers, and continually attracting new users. For more information about Perfecto, visit www.perfectomobile.com, join our community, or
follow us on Twitter at @PerfectoMobile.

Get content just like this delivered to your inbox!

http://www.perfectomobile.com
http://perfectomobile.com
http://www.perfectomobile.com/continuous-quality-lab
http://www.perfectomobile.com
https://community.perfectomobile.com/
http://twitter.com/perfectomobile
https://www.perfectomobile.com/resources/blog-subscription-page

	Button 4:
	Page 2:
	Page 41:
	Page 62:
	Page 83:
	Page 94:
	Page 105:

	Button 5:
	Page 2:
	Page 41:
	Page 62:
	Page 83:
	Page 94:
	Page 105:

	Button 6:
	Page 2:
	Page 41:
	Page 62:
	Page 83:
	Page 94:
	Page 105:

	Button 1:
	Page 3:
	Page 51:
	Page 72:
	Page 113:
	Page 134:
	Page 155:
	Page 176:

	Button 2:
	Page 3:
	Page 51:
	Page 72:
	Page 113:
	Page 134:
	Page 155:
	Page 176:

	Button 3:
	Page 3:
	Page 51:
	Page 72:
	Page 113:
	Page 134:
	Page 155:
	Page 176:

	Button 7:
	Button 8:
	Button 9:
	Button 24:
	Button 23:
	Button 22:
	Button 12:
	Button 11:
	Button 10:
	Button 15:
	Button 14:
	Button 13:
	Button 18:
	Button 17:
	Button 16:
	Button 19:
	Button 20:
	Button 21:

